Homogeneity of ball milled ceramic powders: Effect of jar shape and milling conditions

نویسندگان

  • M. Broseghini
  • M. D’Incau
  • L. Gelisio
  • N.M. Pugno
  • P. Scardi
چکیده

This paper contains data and supporting information of and complementary to the research article entitled "Effect of jar shape on high-energy planetary ball milling efficiency: simulations and experiments" (Broseghini et al.,) [1]. Calcium fluoride (CaF2) was ground using two jars of different shape (cylindrical and half-moon) installed on a planetary ball-mill, exploring different operating conditions (jar-to-plate angular velocity ratio and milling time). Scanning Electron Microscopy (SEM) images and X-Ray Powder Diffraction data (XRPD) were collected to assess the effect of milling conditions on the end-product crystallite size. Due to the inhomogeneity of the end product, the Whole Powder Pattern Model (WPPM, (Scardi, 2008) [2]) analysis of XRPD data required the hypothesis of a bimodal distribution of sizes - respectively ground (fine fraction) and less-to-not ground (coarse fraction) - confirmed by SEM images and suggested by the previous literature (Abdellatief et al., 2013) [3,4]. Predominance of fine fraction clearly indicates optimal milling conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of ball milling on reactive microwave sintering of MgO-TiO2 System

Abstarct  In this paper, effect of mechanical activation on microwave reactive sintering of MgO - TiO2 system was investigated. Mixtures of MgO and TiO2 were milled at different times. Mixed powders along with 10 h milled powders were chosen for microwave sintering between 1000- 1400⁰C. Results showed that increasing of temperature up to 1400̊C for mixed powders could not give rise to complete f...

متن کامل

Effect of milling time on the crystallite size and microstructure of Al2O3/Mo Nano composite

In this paper, the production of Al2O3-Mo nano-composites via mechanical milling was investigated. Molybdenum and alumina powders with certain ratios were grounded in a planetary ball mill at different times. XRD technique was used to determine the crystallite size of the milled powders. The microstructure of milled powders was studied using optical and electron microscopes. The crystallite siz...

متن کامل

Effect of Chromium Content on Formation of (Mo1-x-Crx) Si2 Nanocomposite Powders via Mechanical Alloying

(Mo1-x-Crx)Si2 composite powders were successfully synthesized by ball milling of Mo, Cr and Si elemental powders. Effects of the Cr content, milling time and annealing temperature were investigated. X-ray diffraction (XRD) was used to characterize the milled and annealed powders. The morphological and microstructural evolutions were studied by scanning electron microscopy (SEM) and transmissio...

متن کامل

THE EFFECT OF MILLING CONDITIONS ON THE MECHANICAL ALLOYING AND COMBUSTION SYNTHESIS OF TIO2-AI-C POWDER MIXTURE

A mixture of Tio2+Al+C powders was mechanically activated using a planetary ball mill under different milling conditions wherein the milled powders were further subjected to combustion synthesis to produce TiC+Al2O3 composite. The mechanically alloyed powders were characterized by X-Ray diffraction analysis and TEM investigations. XRD analysis of milled powder mixture showed no significant reac...

متن کامل

Effect of milling time and microwave sintering on microhardness and electrical properties of nano and micro structured cordierite

The purpose of this research is to investigate the mechanical and electrical properties of nano structured cordierite. Nano grain size powders were synthesized through mechanical activation by high-energy ball milling of the starting powders containing 34.86 wt% Al2O3, 51.36 wt% SiO2, and 13.78 wt% MgO. Samples were prepared by conventional and microwave sintering at 1390°C. SEM observations il...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017